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Abstract This study explores whether it is possible to reconstruct the frequency of extreme precipitation
occurrence across the contiguous United States (CONUS) using the Living Blended Drought Atlas (LBDA), a
500 year paleoclimate reconstruction of the summer (June–August) Palmer Drought Severity Index (PDSI).
We first identify regions of the country where the LBDA may reflect the occurrence of extremes based on
their seasonality and contribution to total annual moisture delivery. Correlation measures are used to assess
the relationship between the frequencies of extreme precipitation occurrence and both the instrumental
monthly PDSI and the annual LBDA-estimated PDSI. Extreme precipitation is found to account for a large
portion of total precipitation west of the Mississippi River and clusters in particular seasons (winter and
summer), supporting a strong relationship with the LBDA without much information loss from the instru-
mental PDSI data. Dimension reduction techniques are used to explore the joint spatiotemporal structure of
extreme precipitation occurrence and LBDA across the country. The primary modes of variability of the
LBDA and extreme precipitation occurrence relate remarkably well for a region centered over the southwest
that exhibits an ENSO-like time-frequency structure. Generalized linear models (GLMs) are used to demon-
strate the feasibility of reconstructing the annual extreme precipitation frequency over the 500 year prehis-
toric record at two sites in the southwest and Southern Plains. GLM-based reconstructions show a high
degree of structured variability in the likelihood of extreme precipitation occurrences over the prehistoric
record.

1. Introduction

Our understanding of decadal to centennial and longer-scale variations in extreme precipitation is severely
limited by the lack of multicentennial instrumental rainfall data. While reconstructions of drought, tempera-
ture, and streamflow are routinely developed using a variety of proxies (e.g., tree rings, corals, and ice cores),
no such efforts have been directed at the reconstruction of extreme rainfall given the perceived incompati-
bility between the temporal scale of events and the sensitivity of paleoclimate proxies. However, it is possi-
ble that the occurrence of extreme rainfall could be inferred in regions where (1) rainfall-sensitive
paleoclimate records exist and (2) seasonal or annual rainfall totals are dominated by a few extreme rainfall
events. Across much of North America, one such paleoclimate proxy is available through the Living Blended
Drought Atlas (LBDA) [Cook et al., 2010], a multicentennial tree ring-based paleoclimate reconstruction of
the Palmer Drought Severity Index (PDSI) [Palmer, 1965]. The PDSI records both positive and negative excur-
sions in moisture availability related to periods of high and low rainfall that may also be captured in the tree
ring-based LBDA. This leads to the key question posed in this paper as to whether the LBDA contains useful
information about extreme precipitation occurrence in any region. We find affirmative evidence in support
of this conjecture over a large part of the contiguous United States (CONUS) and show that these regions
coincide with areas where rainfall totals are heavily influenced by a few extreme rainfall events during sea-
sons important for moisture availability for tree growth. We explore how the spatiotemporal structure of
extreme precipitation and PDSI are related using the LBDA records and investigate links to larger-scale oscil-
lations in the climate system. The ability to reconstruct extreme precipitation occurrence using the LBDA is
demonstrated for two selected locations where we use generalized linear models (GLMs) with the instru-
mental records of extreme precipitation frequency in a water year, and the instrumental PDSI corresponding
to the LBDA reconstruction, and use this fitted model to project extreme precipitation frequency over the
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500 year record. Structured variations in the reconstructions are explored and prospects for the application
of such methods utilizing the original tree ring series rather than the LBDA are discussed.

2. Background

There has been substantial progress over the last several decades in our understanding of historic hydrocli-
mate variability across the CONUS [Namias, 1966; Ropelewski and Halpert, 1987; Trenberth et al., 1988; Pie-
chota and Dracup, 1996; Gershunov and Barnett, 1998; Barlow et al., 2001; McCabe et al., 2004; Goodrich,
2007; McCabe et al., 2008], and dynamic climate modeling has enabled attribution studies to link droughts
and pluvials on multiannual to decadal time scales with large-scale ocean-atmosphere mechanisms in the
Pacific and Atlantic Oceans [Wang et al., 2008; Schubert et al., 2009; Kushnir et al., 2010; Wang et al., 2010;
Dai, 2013; Seager and Hoerling, 2014]. Similar lines of work have been pursued for extreme precipitation and
flooding events, but with more difficulty [Zwiers et al., 2013; Patricola et al., 2013; Sillmann et al., 2013] due
to parameterized, coarse model grids that cannot represent local convection [Dai, 2006; D�equ�e et al., 2007;
Kendon et al., 2012; Chan et al., 2014; Kysely et al., 2015], and biases in larger-scale storm systems [Pritchard
et al., 2011; Daloz et al., 2012; Bukovsky et al., 2013; Zappa et al., 2013; Seiler and Zwiers, 2015; Walsh et al.,
2015].

Paleoclimate reconstructions provide an alternative approach to improve our understanding of past hydro-
climate variability using archives that preserve signals of environmental variability [Cronin, 2010; Evans et al.,
2013] prior to instrumental or historical (i.e., qualitative) records. A large suite of paleoclimate archive types
(e.g., tree rings, ice cores, land and ocean boreholes, and speleothems) has been used as proxy indicators of
climate variability and extreme events across the globe [Jones et al., 2009]. One key product that has
emerged from these studies particular to drought in the CONUS is the Living Blended Drought Atlas (LBDA)
[Cook et al., 2010], an extension of the seminal North American Drought Atlas [Cook et al., 1999; Cook and
Krusic, 2004]. The LBDA is an amalgamation of 1845 tree ring chronologies into a paleoclimate reconstruc-
tion of the summer (June–August) Palmer Drought Severity Index (PDSI) that spans the entire CONUS region
for the past 500 years. This product has proven instrumental in understanding the spatiotemporal patterns
and likelihood of drought across the CONUS [Cole et al., 2002; Fye et al., 2003; Lyon et al., 2005; Woodhouse
et al., 2005; Herweijer et al., 2006; Stahle et al., 2007; Cook et al., 2010, 2013, 2014; Ault et al., 2014].

Paleoclimate work has also been pursued for extreme wet events, but with more difficulty. Analysis of
extreme paleo-hydrologic events has primarily focused on prehistoric floods, using paleostage indicators
(PSI) along river reaches or in the floodplain that record the level of past floods [Benito and Thorndycraft,
2005]. The use of these data, particularly in bedrock canyon basins in the southwest U.S. [Baker, 1977; Patton
and Dibble, 1982; Ely and Baker, 1985; Enzel et al., 1993; Levish, 2002], has been extremely successful at
detecting the threshold exceedance of prehistoric high-magnitude floods. However, unlike the tree rings
underlying the LBDA, the availability of paleostage evidence is limited across the country [Baker, 2013] and
is typically not annually resolved. Furthermore, annually resolved paleoflood evidence (e.g., flood tree rings
[Yanosky, 1983; Therrell and Bialecki, 2015]) is limited due to other factors including biological sensitivity and
the extent and timing of the floods [St. George and Nielsen, 2003].

Given the limited paleoflood evidence across the country and the high uncertainty that underscores
extreme event risk assessments, there is a need to augment the prehistoric records of extreme wet events.
We explore whether the LBDA, with a high spatial and temporal resolution, can be used for this purpose. An
exploration of this potential is the primary contribution of this work. The use of tree ring archives to recon-
struct extremes is unlikely to resolve all features of short-duration (i.e., daily) extremes and may, in some
regions, be insensitive to any precipitation signal, particularly in humid areas where moisture is less strongly
limiting for tree growth. However, the LBDA was amalgamated using only moisture and temperature-
sensitive tree ring chronologies. Therefore, the LBDA may provide evidence of a shift in the odds for
extreme rainfall and floods in areas where extremes play a large role in moisture delivery and occur in sea-
sons linked to tree growth. Taken in conjunction with other paleoflood evidence (where available), this
could advance our understanding of past annual variations in the frequency of extreme events and improve
methods for nonstationary flood and extreme rainfall probability estimation, as part of a modern dynamic
risk assessment and management approach [Jain and Lall, 2001; Sankarasubramanian and Lall, 2003; Kwon
et al., 2008; Lima and Lall, 2010; Delgado et al., 2014; Merz et al., 2014].
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3. Data

The PDSI, originally developed by Palmer [1965], is a monthly measure of the balance between atmospheric
moisture supply and demand and takes into account regional climatology and short-term hydrologic per-
sistence. Heddinghaus and Sabol [1991] proposed a modified version of the PDSI to enable near-real time
monitoring and address discrepancies in the continuity of PDSI when climate transitions between drought
and pluvial states. Two versions of the modified PDSI, an instrumental-based record and paleoclimate
reconstruction, are used in this analysis. The instrumental PDSI is a monthly record from 1895 to 2005 that
spans North America and was derived using station data for precipitation and temperature and a gridded
soil water capacity data set interpolated to a 0.58 3 0.58 latitude/longitude grid [Heim et al., 2007].

The Living Blended Drought Atlas (LBDA) is a paleoclimate reconstruction of average summer (June–
August) PDSI over North America that is spatially complete over the CONUS from 1473 to 2005. The LBDA
incorporates information from 1845 tree ring chronologies (see Figure 1) and was calibrated to the PDSI
developed by Heim et al. [2007]. The reconstruction was formulated to enable the gridded data to be seam-
lessly updated with instrumental-based records of PDSI and consists of these instrumental records from
1979 onward. Cook et al. [2007] demonstrate good agreement between reconstructed and instrumental
PDSI records; additional support for this relationship in the period prior to 1979 is presented in the support-
ing information, as is further information on the tree species used in the development of the LBDA.

Daily precipitation across the CONUS is taken from the CPC U.S. unified precipitation data set [Chen et al.,
2008]. The continuous precipitation product is derived from gaged data interpolated to a 0.258 grid
between 208N–508N and 1308W–558W [Xie et al., 2007] and is truncated to span 1 October 1948 to 30 Sep-
tember 2005 in order to run over complete water years. The data are then averaged up to a larger 0.58 3

0.58 grid to match the PDSI and LBDA data. We note that the results presented below are remarkably similar
if the data are aggregated to the 0.58 grid level by taking the maximum precipitation value of 0.258 grid cell
instead of their average. Daily precipitation data are also gathered for two individual gaging stations
(GHCND:USW00023174 Los Angeles International Airport, CA, and GHCND:USW00003927 Dallas Fort Worth
WSCMO Airport, TX) through NOAA’s Global Historical Climatology Network (GHCN) from 1 October 1948 to
30 September 2005 to demonstrate the reconstruction of prehistoric frequencies of extreme precipitation.
Both gages have continuous records over the time period without any missing values.

4. Analysis

In this section, we first explore the moisture contribution and seasonality of extreme precipitation events
across the CONUS to better understand the physical basis underscoring a possible link between tree growth

Figure 1. Ratio of cumulative extreme to cumulative total precipitation over the period of record. Tree ring sampling sites for the LBDA,
Los Angeles, CA, and Dallas, TX, are also shown.
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and precipitation extremes. Then, we investigate the relationship between extreme precipitation occur-
rence and both the instrumental PDSI and LBDA. Next, the joint patterns of spatiotemporal variability in the
LBDA and extreme precipitation occurrences are investigated using multiple-dimension reduction techni-
ques and a wavelet coherence analysis. Finally, we demonstrate the potential for annual reconstructions of
the frequencies of extreme rainfall for two rainfall-gaging stations based on the LBDA over the 500 year pre-
historic period and explore the resulting variability of the reconstructed series using wavelet analysis.

4.1. Extreme Precipitation Occurrence
For each (0.58 3 0.58) CPC precipitation grid cell, we define the count of extreme precipitation occurrences
(hereafter referred to as the peaks-over-threshold (POT) data) using the number of precipitation days in
each water year greater than the 99.5th percentile of daily precipitation across all days of the record (includ-
ing zero precipitation days). This threshold is calculated without seasonal distinction and leads to approxi-
mately two extreme events per year on average. No separation was required between individual events,
although a sensitivity analysis showed that requiring a 3 day separation between extremes has no material
effects on the results of the analysis.

The ratio of cumulative precipitation delivered during extreme events to total precipitation for all events
across the entire record is shown in Figure 1. This ratio highlights regions where extreme precipitation con-
tributes a large fraction of the total moisture, and thus where tree ring widths may be more reflective of
extremes. The southwest U.S. stands out as a region where extremes dominate moisture delivery, with aver-
age contribution exceeding 37% in areas surrounding the Mojave Desert. While not as dramatic as the
southwest, a wide swath of the Great Plains spanning from west Texas to Montana and the Western Moun-
tain ranges (Rockies, Cascades, and the Sierra Nevada) also show high moisture contributions from
extremes.

The seasonality of the POT data, reported as the percentage of events by calendar month, is examined to
identify extreme event clustering in months that are more likely to be linked to tree ring widths (Figure 2).
As documented elsewhere [Kunkel et al., 1999; Groisman et al., 2001], the U.S. West Coast receives the
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majority of extremes during the winter (November–March), while the summertime (June–September)
Southwest Monsoon also accounts for a large portion of extremes in Arizona, New Mexico, and west Texas.
Heavy precipitation in the Great Plains clusters from late spring through the summer (May–August), with a
northern core region that migrates from Wyoming to Wisconsin as the season progresses. Extremes are
more spread out during the year across the broader eastern U.S., albeit with minor peaks in the southeast
between March–April and both the southeast and northeast during the summer (June–September).

Since tree growth and the PDSI are influenced by short-term hydrologic persistence and are reflective of
recent moisture conditions, it is likely that the reconstruction of extreme precipitation occurrence using the
LBDA will be most skillful in regions where climate mechanisms like the Great Plains Low Level Jet in the
central U.S. [Higgins et al., 1997] and the North American Monsoon in the southwest U.S. [Bukovsky et al.,
2013] drive extremes and annual rainfall totals during or shortly prior to the summertime growing season.
In addition, winter precipitation west of the Rocky Mountains can also relate to summer PDSI, LBDA, and
tree growth [Fritts, 1976; Woodhouse and Meko, 1997; St. George et al. 2010], where the accumulation of
snow during extreme winter weather acts as a reservoir that continues to deliver moisture from spring
onward [Rochefort et al., 1994; McNamara et al., 2005]. The seasonality of extreme precipitation events taken
in tandem with their contributions to annual precipitation totals suggests that the best relationships
between the LBDA and extreme precipitation occurrence are most likely located in the western half of the
United States, and particularly in the southwest. These relationships are explored next.

4.2. Relationship Between the LBDA and Extreme Precipitation
We first consider the relationship between the number of extreme events and the instrumental PDSI
between 1948 and 2005. These relationships are explored on a monthly basis using nonparametric Spear-
man (rank) correlations between the annual POT data and monthly PDSI of the corresponding calendar
year on a grid cell by grid cell basis (Figure 3). The frequency of extreme precipitation events over a water
year is significantly correlated with the instrumental PDSI at the 99% level for individual, grid-by-grid tests
over most of the CONUS between May and October. Correlations also exhibited field significance at the
0.01 level for all months based on the false discovery rate adjusted p value [Benjamini and Hochberg, 1995].
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The correlation patterns are unchanged if Pearson or Kendall correlation coefficients are used instead (not
shown), although the magnitudes are the largest when using Pearson correlations, indicating that the rela-
tionship is somewhat stronger in the tails of the PDSI and POT data than in the center of the distribution.

The significant relationships over the boreal summer are promising for the reconstruction of the frequencies
of extreme precipitation based on the LBDA. A large proportion of extreme precipitation events in the cen-
tral south CONUS, near New Mexico and Texas, occur during the North American Monsoon in July, August,
and September and are correlated with PDSI in these months. High correlations are also found during the
summer (June–September) throughout the northern Great Plains, likely linked to moisture delivery by the
Great Plains Low Level Jet. In contrast, extreme precipitation events farther west (western Arizona, southern
California, and broadly the western coastline) are correlated with winter PDSI values, but also strongly corre-
lated with PDSI later in the year during spring and summer. The seasonality of extreme precipitation and its
relationship with PDSI in the spring and summer tree-growing season corroborates with previous findings
that tree growth in the southwestern and western CONUS is influenced by winter precipitation [Fritts, 1976;
Woodhouse and Meko, 1997; St. George et al., 2010]. In the eastern U.S., some highly significant correlations
are present in the southeast during the spring (March–April), but overall the signal between the POT and
PDSI data is weaker east of the Mississippi River. In summary, much of the potential skill for explaining
extreme precipitation occurrences lies in the central and western U.S. and can be derived from PDSI values
in the summer (June–August), suggesting that the LBDA is capturing much of the PDSI-extreme precipita-
tion relationship, although further improvements are likely possible throughout the Great Plains if the LBDA
were extended to account for September PDSI values.

Figure 4 shows the Spearman correlation coefficients between the annual POT data and the annual LBDA
over the period 1948–2005 and on a grid cell by grid cell basis. These relationships directly indicate the
potential for extreme precipitation reconstruction. However, since the LBDA includes instrumental data
from 1979 onward, we also note that the correlations in Figure 4 remain relatively unchanged, particularly
in the West, if recalculated over only the 1948–1978 (tree ring only) period. The correlation coefficients in
Figure 4 are significant at the 0.01 level on a grid-by-grid basis over much of the CONUS, with a median of
0.36 and interquartile range of [0.27,0.45]. Correlations also exhibited field significance at the 0.01 level, and
the patterns are invariant when a Kendall or Pearson correlation coefficient is used. The relationships are
the strongest in southern California and western Nevada, as well as in patches throughout the Great Plains,
with correlations often exceeding 0.5 and reaching as high as 0.80. We note that further improvements in
this relationship are likely possible throughout the Great Plains if the LBDA was extended to account for
September PDSI values, as suggested by Figure 3. Overall, much of the western U.S. shows promise for the
reconstruction of extreme precipitation occurrences based on the current LBDA.

Figure 4. Grid-level Spearman correlation coefficients between LBDA values and the number of extreme precipitation events in each water
year. Tree ring sampling sites for the LBDA, Los Angeles, CA, and Dallas, TX are also shown.
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4.3. Comparing POT and LBDA Spatiotemporal Variability
Figure 4 shows moderate to strong relationships between the LBDA and extreme precipitation occurrence
on a local (grid-cell) basis for much of the western CONUS, but we are also interested in whether these data
exhibit similar spatiotemporal variability on a larger scale. Methods of dimension reduction such as Empiri-
cal Orthogonal Functions (EOFs) and rotated EOFs (REOFs) are often used to extract the main modes of vari-
ability of climate fields [Hannachi et al., 2007]. However, the orthogonality constraints imposed on EOF
analysis can result in spurious Buell patterns characterized by overly complex polar structures inconsistent
with the data, while REOFs can result in oversimplified structures that ignore complexity in the original field
[Wilks, 2011]. For this reason, we also use Archetype Analysis (AA) [Cutler and Breiman, 1994; Stone and
Cutler, 1996; Steinschneider and Lall, 2015] in addition to traditional EOF and REOF methods to verify the
spatial patterns identified in the EOF analysis.

AA is a complementary algorithm to EOF analysis that similarly decomposes the spatiotemporal variability
of a climate field but with different underlying constraints. AA represents each time-based observation of a
climate field as a convex combination of a limited set of archetypes, or (possibly unobserved) extremal
points lying on the boundary of the convex hull of the original data set. The archetypes themselves are con-
strained to be a convex combination of the original data and can be interpreted as pure types or character-
istic extremal spatial patterns. Similar to EOF and REOF analysis, AA produces spatial loading patterns and
time series projections of those patterns analogous to EOFs and principal components (PCs). For details
regarding the mathematical formulation and fitting algorithms of AA, we refer the reader to the references
above [see Cutler and Breiman, 1994; Stone and Cutler, 1996; Steinschneider and Lall, 2015]. The important
point to note is that the spatial loading patterns of AA do not have orthogonality constraints like EOFs and
are either actual observations or convex mixtures of observations, which eases their interpretation and
makes them useful for comparing and evaluating the fidelity of EOF and REOF patterns.

The EOFs, REOFs (Varimax rotation), and archetypes are computed for both LBDA and POT climate fields. Ini-
tially, the number of retained EOFs, REOFs, and archetypes are (5,8,5) for the LBDA data and (5,7,5) for the
POT data; these values were selected using North’s Rule [North et al., 1982] (EOFs), scree tests (archetypes),
and a trial-and-error procedure based on the stability of the leading eigenvectors (REOFs) [Wilks, 2011] (see
supporting information). For brevity, in Figure 5, we only show the loading patterns of the first three leading
EOFs for the LBDA (top row) and POT data (bottom row). We also show the associated archetypes that have
similar loading patterns and high correlations between the respective time projections. We note that the

Figure 5. Loading patterns for the leading three EOFs (shaded) and associated archetypes (contours) of the (top row) LBDA and (bottom
row) POT data. Note that unlike EOFs, the archetypes have no natural ordering by degree of variability explained. The variance explained
by each EOF is given in the title, as well as the Kendall correlation between its principal component and associated archetype time projec-
tion. Positive (blue) and negative (red) contours are given in increments of 0.5.
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relatively low variance explained by the EOFs for both LBDA and POT data sets is likely related to the size of
the study domain and for the POT data, the level of heterogeneity in extremes. The archetype loadings for
the POT data are also more variable due to this heterogeneity and the constraint that archetype patterns be
convex combinations of actual observations.

For the LBDA, the first EOF shows a monopole over most of the western U.S., followed by north-south and
east-west dipoles for EOF2 and EOF3. The monopole and dipole structures in the first few EOFs are usually
indicative of spurious Buell patterns caused by orthogonality constraints [Wilks, 2011]. However, the arche-
types generally reflect these same configurations, and since archetypes have no orthogonality constraints
and are more likely to resemble actual observations in the data set, this supports the fidelity of the identi-
fied patterns. We have further confidence in these dipole patterns after viewing animations of instrumental
monthly PDSI data (http://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers/) and seeing
similar patterns emerge consistently. Similar arguments support the first three EOFs of the POT data. After
comparing the spatial loadings of all retained EOFs with those of all retained archetypes for the LBDA and
POT data, and repeating a similar analysis for the REOFs (see supporting information), the EOFs were deter-
mined to be more consistent with the archetypes than the REOFs and are thus more likely to actually repre-
sent the spatiotemporal variability of the data. As such, the EOFs were selected for further analysis.

Figure 6 shows a comparison between the leading EOF of the LBDA and POT data. The comparisons include
a visual evaluation of their loading patterns, time projections, and a wavelet coherence analysis [Torrence
and Compo, 1998; Grinsted et al., 2004] to examine the time-frequency relationships between PCs. The first
EOFs of the LBDA and POT data relate remarkably well. Both patterns are centered over the southwestern
U.S., although EOF1 for the POT data also has a slightly opposing loading pattern over the Ohio River Basin.
Neither PC shows a substantial trend, but they are significantly correlated with a Kendall (Pearson) correla-
tion coefficient of 0.53 (0.69). Both PCs also show significant oscillations in the 4–6 and 11–16 year fre-
quency bands. Given past work on the LBDA [Rajagopalan et al., 2000; Cole et al., 2002], the 4–6 year
oscillation is likely an El Ni~no-Southern Oscillation (ENSO) signal that also propagates into the extremes of
the southwest [Trenberth et al., 1988; Piechota and Dracup, 1996; Ward et al., 2014], while decadal fluctua-
tions in ENSO [Gershunov and Barnett, 1998; Barlow et al., 2001; Goodrich, 2007] may also explain the

Figure 6. Comparison of EOF1 of the LBDA and POT data, including (a) scatterplot of PCs, (b) time series plots of PCs, (c) wavelet coher-
ence (significance is outlined in bold at the 90% level), and (d) their loading patterns (LBDA contoured, POT shaded). Contours are shown
at 0.05 increments. The variance explained by both EOFs and their Pearson and Kendall correlation coefficients are also given.
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significant signal in the 11–16 year band,
although such decadal structure has also been
identified in precipitation records in regions not
often influenced by ENSO conditions [Markonis
and Koutsoyiannis, 2015].

To better understand the link to ENSO, Figure 7
shows the correlations between detrended, win-
ter (DJFM) sea surface temperature anomalies
(SSTAs) and the first PC of both the LBDA and
POT data. Both PCs exhibit a positive relationship
with ENSO. Interestingly, though, the relation-
ship with the POT data appears stronger and
centered farther into the central Pacific (Ni~no 3.4
region), while the core region of correlations is
weaker and shifted farther east (Ni~no 1.2 region)
for the LBDA. The shift in SST region is likely due
to differences in the spatial distribution of load-
ings for the POT and LBDA EOFs. The loading
patterns for the POT are focused strongly in the
southwest while those for the LBDA are spread
farther toward the central plains. This is similar
to the shift in the core region of correlations
between gridded, winter (DJFM) average precipi-
tation and ENSO when changing from a Ni~no 3.4
to Ni~no 1.2 index (not shown). The link between
wintertime precipitation extremes in the south-

west and ENSO is well understood [Cayan et al., 1999] and underscores the strong relationship seen in Fig-
ure 7. PC1 of the LBDA, being a summertime index centered in the southwest, has been linked to extreme
precipitation through the snow accumulation from (often extreme) wintertime storms [Fritts, 1976; Wood-
house and Meko, 1997; St. George et al., 2010]. We speculate that ENSO and the LBDA are indirectly linked
through wintertime snow accumulation and melt, with extreme wintertime precipitation events acting as a
bridge. Further validation of this hypothesis requires an in-depth analysis of snow records and the possible
relationship between wintertime ENSO and the summertime Southwest Monsoon [Wang et al., 2012] that is
beyond the scope of this work and is thus suggested for further research.

Overall, the remarkable similarities shared by the primary modes of spatiotemporal variability of both POT
and LBDA data sets—namely their in-phase inter-annual and decadal fluctuations across the western United
States—suggest persistent, anticorrelated risk of droughts and extreme precipitation across the region that
may be somewhat predictable based on seasonal forecasts of ENSO. This structure could be very relevant
for planning and management activities that often occur on these inter-annual and decadal time scales.

4.4. Reconstruction of the Frequency of Extreme Precipitation With Generalized Linear Models
As an example of the potential for using the LBDA data for insights into long-term fluctuations of the fre-
quency of occurrence of extreme precipitation, GLMs are used to estimate the relationship between the
average occurrence rate of extremes and the instrumental PDSI and then reconstruct the distribution of
extreme precipitation occurrences into the prehistoric record using the LBDA. Here we assume that all sub-
stantive fluctuations in extreme precipitation average occurrence rates can be represented by variability in
the LBDA data. The reconstruction is applied to two rainfall gages in the southwest U.S. (Los Angeles, CA)
and Southern Plains (Dallas, TX). A Poisson regression is used to estimate the rate (annual frequency) of
extreme precipitation occurrence using a logistic link function k PDSItð Þ of a regional PDSI indicator, taken as
the 0.58 3 0.58 instrumental PDSI grid cell in which the precipitation station is located. In practice, one could
consider a more formal process for the selection of a PDSI neighborhood to inform such a regression. Here
for demonstration purposes, a simpler approach is used.

Figure 7. Pearson correlations between detrended SSTAs and PC1 of
the (top) LBDA and (bottom) POT data. Absolute correlations above
0.27 are significant at the 0.05 level.
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The model calibration is first verified using a
leave-k-out cross-validation procedure over
the instrumental record using likelihood ratio
tests. In this procedure, k 5 28 years of data
(half the record) are randomly removed from
the record and both the Poisson regression
and a standard maximum likelihood estimator
is fit to the remaining data. A likelihood ratio
test is then used to compare the two models
over both the training and testing sets. This
process is repeated 1000 times, and the distri-
bution of p values from the likelihood ratio
test is examined to determine if the Poisson
regression provides robust improvement over
the null model (Table 1). For the Los Angeles,
CA, gage, the p values from the likelihood ratio

tests are at less than the 0.05 level for almost 95% of the training sets and for 90% of the testing sets, sug-
gesting that that the Poisson regression model significantly outperforms the baseline Poisson model. The
Poisson regression model performs similarly against the null model for the Dallas, TX, gage, with the p value
below the 0.05 level in more than 95% of the training sets and almost 90% of the testing sets. Overall, the
Poisson regression model provides a robust improvement over a null Poisson fit for both the Los Angeles,
CA, and Dallas, TX, gages.

After verifying the skill of the Poisson regression model, it is used to reconstruct the mean rate of extreme
precipitation occurrences for the prehistoric period at both sites (Figure 8). The mean parameter estimate is
shown along with 90% confidence bounds. During the instrumental period (1895–2005), these bounds are

Table 1. The Distribution of p Values for the Likelihood Ratio Tests
Across the 1000 Training and Testing Sets for Both the Los Angeles,
CA, and Dallas, TX, Gages

Los Angeles, CA,
Station Dallas, TX, Station

Percentile Training Testing Training Testing

1% <0.01 <0.01 <0.01 <0.01
5% <0.01 <0.01 <0.01 <0.01
10% <0.01 <0.01 <0.01 <0.01
25% <0.01 <0.01 <0.01 <0.01
50% <0.01 <0.01 <0.01 <0.01
75% <0.01 <0.01 <0.01 <0.01
90% 0.02 0.04 0.02 0.05
95% 0.06 1 0.03 0.3
99% 0.40 1 0.14 1

Figure 8. Reconstructed mean Poisson rate based on the LBDA with 90% confidence bounds for the Los Angeles, CA (black, left axis) and
Dallas, TX (blue, right axis) precipitation gages. Confidence bounds post-1895 account for regression parameter uncertainty, while pre-
1895 they also include uncertainty in the tree ring/PDSI relationship. The beginning of the calibration period is indicated by a vertical dot-
ted line.
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based entirely on the standard errors of the GLM parameter estimates and are relatively narrow at the
reported confidence level. In the preinstrumental period (1473–1894), the uncertainty underlying the LBDA
must also be carried through the regression. This is achieved using a Monte Carlo approach. Here sample
time series of the PDSI are generated by adding the LBDA values to random deviates with variance equal to
the mean squared error of the original PDSI fit for each location, as reported by Cook et al. [2007]. Samples
of the GLM parameters are also generated based on their standard errors and are used in conjunction with
the PDSI sample time series to estimate the mean Poisson rate over the preinstrumental record. This pro-
cess is repeated 1000 times to generate 1000 sample time series of the prehistoric mean Poisson rate. At
each time step, the median value of these sample time series is shown in Figure 8, along with 90% confi-
dence bounds.

The reconstruction for the L.A. gage shows large fluctuations in the average rate of occurrence of extreme
precipitation over the 500 year record, with many of the highest risk years occurring in the instrumental
(post-1895) and historic (post-1800) record (1884,1868,1941,1983, and 1998). This suggests that years with
abnormally high numbers of extremes were no more likely in the prehistoric versus historic and instrumen-
tal periods. It is noteworthy though that the prehistoric record contains several multidecadal periods during
which the likelihood of extremes has risen above the stationary Poisson estimate based on the instrumental
record. By contrast, none of the top nine highest risk years at the Dallas gage occur after 1900, and only
two occur after 1800, suggesting that prehistoric extreme precipitation occurrences are likely to have
exceeded instrumental (post-1895) and historic (post-1800) levels. The frequent occurrence of high-risk
years in the prehistoric record could indicate that the record east Texas floods of May–June 2015 may not
be inconsistent with past extreme events for the region.

Finally, a wavelet analysis is used to examine the time-frequency structure of the prehistoric mean Poisson
parameter to characterize the low-frequency variability of reconstructed extreme precipitation occurrences
at both sites (Figure 9). The Poisson rate is first log-transformed prior to wavelet transform in order to
remove any discontinuities due to high skew in the reconstructions, although the major features are
unchanged if the raw reconstructions are used. A 16–32 year oscillation in L.A. extreme precipitation

Figure 9. Wavelet spectra for the reconstructed, log-transformed mean Poisson rate parameter for the Los Angeles, CA, and Dallas, TX, pre-
cipitation gages.
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average occurrence rate stands out as the most prominent feature of the two gages. Interestingly, this deca-
dal fluctuation appears intermittently throughout the prehistoric record, emerging between 1700–1800 and
1850–1950, but absent otherwise. In the last 50 years of the record, the L.A. gage also exhibits a 2–7 year
signal very similar to that seen in the wavelet spectrum of the original POT data (not shown), but this signal
is not consistent throughout the prehistoric reconstruction, suggesting that the influence of ENSO, at least
in this frequency band, may be intermittent. The Dallas gage exhibits less low-frequency variability at lower
bands than seen for the L.A. gage. However, it does show intermittent oscillations with a 2–8 year period
throughout the record that are similar to the power spectrum of the original POT data (not shown), perhaps
suggesting weak links with ENSO.

5. Conclusions

This study examined the potential to use the LBDA to reconstruct the frequency of extreme precipitation
across the contiguous United States. We first investigated the seasonality and total moisture contribution of
extreme precipitation across the country, showing that extreme precipitation accounts for a large portion of
total precipitation across much of the western United States, with particularly high contributions in the
southwest but also across much of the Great Plains. Extremes in those regions tend to cluster in particular
seasons (winter and summer) that are important for moisture availability for tree growth, while extremes
are more diffuse across the year in the east. The seasonality and high moisture contribution of extremes in
the west suggested that they likely relate to the overall moisture availability needed for tree ring growth,
which was confirmed through correlation analyses with both the instrumental PDSI and LBDA.

EOFs were then used to explore the joint spatiotemporal structure of the POT and LBDA data and were
compared against REOFs and archetypes to assess their fidelity. The primary mode of variability of both
LBDA and POT data sets related remarkably well, with a core center over the southwest and time-frequency
structure that resembled the inter-annual and decadal fluctuations of ENSO [Trenberth et al., 1988; Piechota
and Dracup, 1996; Gershunov and Barnett, 1998; Barlow et al., 2001; Goodrich, 2007].

Finally, generalized linear models were used to reconstruct the average rate of extreme precipitation occur-
rence over the 500 year prehistoric record at two precipitation gages in Los Angeles, CA, and Dallas, TX,
based on the local LBDA. The variability and time-frequency behavior of these reconstructions showed a
large degree of variability in extreme precipitation occurrences across the prehistoric record, with intermit-
tent structured oscillations with periods ranging from approximately 2–30 years.

While the potential benefits of the LBDA for extreme precipitation reconstruction are promising, there are
also several limitations that can hinder its use. As shown in the analysis, the utility of the LBDA for predicting
past extremes is only useful in certain areas of the country, particularly arid and semiarid regions in the
west, and may be limited by the availability of tree ring chronologies in certain locations. Furthermore, the
LBDA cannot be used to identify specific extreme events and the reconstructions presented here instead
reflect the likelihood of extremes in any given year. The reconstructions were derived using statistical mod-
els fitted over the instrumental record to link the occurrence of extremes to the LBDA. Hence, the fidelity of
these reconstructions are based on the assumption of stationarity in these statistical relationships over cen-
tennial time scales. Nonstationarity could be introduced through changing characteristics of extremes (e.g.,
seasonality and percentage of total moisture contribution) that alter how they influence tree growth. The
availability of evidence needed to determine whether these characteristics have changed over time may be
limited. Furthermore, while we demonstrated as proof of concept the possibility of reconstruction at two
grid cells in the southwest and Southern Plains, we have not yet developed a robust approach for predictor
selection from the LBDA data and the associated uncertainty analysis.

Future work will explore whether the predictive framework can be extended to extreme event magnitudes
and improved if the LBDA is customized for specific months (e.g., September) that maximize skill. Additional
research is also needed to examine the hypothesized role of extreme winter precipitation events as a bridge
between wintertime Ocean-atmosphere conditions and the summertime LBDA. Finally, extensions to the
analysis of floods and their relation to the PDSI will also be explored, with a focus on integrating different
sources of paleoflood evidence into a comprehensive statistical framework. A nonstationary paradigm is of
particular interest in order to facilitate inter-annual or decadal forecasts of extreme event risk most relevant
for planning and management decisions. One possibility is time series models calibrated to the long records
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of the LBDA and initialized with current states that explicitly account for and forecast structured inter-
annual and decadal oscillations (i.e., Wavelet Auto-Regressive Models [Kwon et al., 2008]) that can be
extended via statistical link functions to extreme event frequency analyses. Long-range forecasts of ENSO or
other ocean signatures (PDO, AMO) developed through recent decadal climate forecast efforts [Meehl et al.,
2014] could be integrated into this framework. A portfolio of risk management measures (e.g., structural
improvements, CAT Bonds, and insurance contracts) could be tailored to these inter-annual or decadal pro-
jections for improved protection and economic efficiency.
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